Sustainable Engineering Program

HOME > Major Subject > Sustainable Program

In the Sustainable Engineering Program of the Graduate School of Engineering, sustainable mechanical engineering, sustainable electrical and electronic engineering, and sustainable applied chemistry are regarded as basic and fundamental engineering fields. Practical education and research are conducted on production technology, design and control based on lifecycle thinking, development and effective utilization of recyclable energy, and creation of substances and materials to support such engineering technologies. Accordingly, as the basic and fundamental engineering technologies for building a sustainable society research is directed towards sustainable mechanical, electrical and electronic engineering, and sustainable applied chemistry, and includes production technology, design, control and sensing based on lifecycle thinking, development and effective utilization of recyclable energy, and creation of substances and materials to support such engineering technologies.

Features

Train up to Professional Engineers with Wide Views

Students take introductory and advanced courses that cover basic to advanced knowledge in their respective pivotal specialist fields, while also taking multiple courses in other fields of specialty. This curriculum composition allows students to acquire broad-ranging expertise.

Investigation of Sustainable Engineering ? a New Field of Engineering for Realizing a Sustainable Society

Sustainable engineering is a new field of engineering research, with the aim of realizing sustainable growth and the autonomous development of Japan and the planet. In addition to acquiring knowledge in this engineering field, students will adopt a panoramic view of social science fields as they research alternative energies, energy conservation, new materials, manufacturing technology, mechatronics and other cutting-edge sustainable concepts from the standpoint of sustainable engineering.

Systematic Research Program

In the Master’s Program, research projects are assigned from the first semester of the first year to the final semester of the second year. The progress of this research is reviewed when setting research themes (first semester of the first year), during the intermediate review meeting (final semester of the first year), and then the preliminary review meeting (first semester of the second year). In the final semester of the second year, students compile their research findings into a master’s thesis for submission and presentation at the master’s thesis review meeting. Moreover, students in the Master’s Program are as a rule required to give at least one external presentation at an academic society or similar location, and they are encouraged to actively participate and present their research findings at lecture meetings and academic conferences both inside and outside the university.

Main Subjects

Research Project Subjects

Research Planning in Sustainable Engineering, Research in
Sustainable Engineering Ⅰ, Research in Sustainable Engineering Ⅱ,
Research in Sustainable Engineering Ⅲ

Students set and plan themes and conduct research under the guidance of a tutor and over the two-year duration of the program. At the end of each semester, research presentation meetings are held so that students can present their research progress and achievements. At the end of two years of study, students write a master’s dissertation as the culmination of their research.

Specialist Subjects

Introduction to Sustainable Engineering

Industrial goods play an immense role in realizing a sustainable society; component materials determine not only the functions, performance and economy of products but also their impact on the global environment. In this course, students learn methods for selecting materials while comprehensively assessing environmental aspects, performance (materials characteristics) and cost (economic effect) in consideration of the overall lifecycle of products based in “lifecycle thinking”, one of the key concepts in sustainable engineering. Also, through studying concrete examples, they learn techniques for developing materials while balancing the environment, performance and cost.

Sustainable Power Electronics

Power conversion using power electronics is an essential technology for realizing a sustainable energy environment as part of a sustainable society. In this course, students learn the basics and circuitry of power electronics and learn about the latest technologies of electric devices using power electronics, such as photovoltaic power conditioners, storage battery and charge/ discharge circuits, electric vehicles, and the drive and regeneration circuits of new devices that use SiC and GaN. Also, through studying applied examples, students learn about sustainable energy and the living environments imparted by power electronics.

Advanced Lecture on Applied Chemistry for Sustainable Engineering

Whether it be structural materials essential for such things as robotics, space vehicles, aircraft and automobiles, or functional materials essential for electric and electronic devices and medical and care devices, the creation of diverse substances and materials provides the foundation for building a sustainable society. In this course, students learn about guidelines and the role played by chemistry in producing and utilizing various substances and materials in sustainable engineering, including metallic, ceramic and polymeric materials. In doing so, they acquire the capacity to: 1) manufacture and make use of raw materials and materials based on green and sustainable chemistry, 2) resolve issues of resources, environment and energy based on energy saving and energy creation from the viewpoint of applied chemistry, and 3) conduct technological development based on sustainable applied chemistry using various materials, including structural materials, electronic materials, organic composite materials, ceramic composite materials, metallic composite materials, and functional composite materials.

Faculty Profiles

Mitsuaki FURUI

Materials Processing

Naoki AMANO

sensing technology

Yasuyuki EGASHIRA

Reaction Engineering, Environmental Engineering

Tomomasa OHKUBO

Laser engineering

Toshimasa KATAGIRI

Organic Molecular Design

Yasuo KIMURA

Hybrid nanodevices

Hiroaki KUROKAWA

Computational Intelligence

She JINHUA

Control theory and applications

Takeshi SHINKAI

Electric power system engineering, High voltage and high power engineering

Jun SUMAOKA

Bionics

Shigeyuki Takagi

Energy Application

Hidetomo TAKAHASHI

man-machine interface, Kansei Engineering

Shu Nakaharai

Semiconductor Devices, 2D Materials, Solid State Physics

Kazuyuki NISHIO

Applied chemistry

Kenji HARA

Catalysis Science and Technology

Edwardo F. FUKUSHIMA

Field Robotics

Narihiko MAEDA

Electronic devices and materials, Environmentally-friendly electronics

Tatsuki MORIMOTO

Coordination Chemistry, Photochemistry, Organic Chemistry

Takashi YAMASHITA

Biopolymer

Takahiro Arakawa

Bio-Instrumentation and Measurement

Satoshi UENO

Synthetic Organic Chemistry

Toshihiro MITA

Material engineering

Kohei Iritani

Nanochemistry

Yuki Ueno

Robotics

Akinori SEKIGUCHI

Computer Science/Robotics

Ryusuke Noda

Biofluid mechanics, Computational fluid dynamics, Aerodynamic noise

Jinseok Woo

Robotics, Intelligent machine, Human symbiosis system

Taro Kato

Development of the acoustic device using functional material and comfort evaluation by a sound signal

Toru HASHIMOTO

Synthetic Organic Chemistry, Organometallic Chemistry

Takashi FUJITA

Nanochemistry